Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38430332

RESUMO

Levilactobacillus brevis KU15006, isolated from kimchi, exhibits pathogen-antagonistic and anti-diabetic activities; however, the safety of this strain has not been assessed. In the present study, L. brevis KU15006 was evaluated to elucidate its safety as a probiotic strain using phenotypic and genotypic analyses. Its safety was assessed using a minimum inhibitory concentration test comprising nine antibiotics, 26 antibiotic resistance genes, a single conjugative element, virulence gene analysis, hemolysis, cell cytotoxicity, mucin degradation, and toxic metabolite production. L. brevis KU15006 exhibited equal or lower minimum inhibitory concentration for the nine antibiotics than the cut-off value established by the European Food Safety Authority. It did not harbor antibiotic resistance and virulence genes. L. brevis KU15006 lacked ß-hemolysis, mucin degradation, cytotoxicity against Caco-2 cells, gelatin liquefaction, bile salt deconjugation, and toxic metabolite production abilities. Based on the results, L. brevis KU15006, which has antagonistic and anti-diabetic effects, could be marketed as a probiotic in the future.

2.
Am J Cancer Res ; 14(2): 727-743, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455399

RESUMO

Hypoxia-inducible factors (HIFs) regulate cellular oxygen balance and play a central role in cancer metastasis and angiogenesis. Despite extensive research on HIFs, successful therapeutic strategies remain limited due to the intricate nature of their regulation. In this study, we identified SPATA20, a relatively understudied protein with a thioredoxin-like domain, as an upstream regulator of HIF-1α. Depleting SPATA20 induced HIF-1α expression, suggesting a tumor-suppressive role for SPATA20 in cancer cells. SPATA20 depletion increased HIF-1α protein levels and transcriptional activity without affecting its degradation. It appears that SPATA20 inhibits the de novo synthesis of HIF-1α, possibly by repressing the cap-dependent translation process involving AKT phosphorylation. Additionally, depletion of SPATA20 promoted cancer cell migration and invasion, which can be reversed by pharmacological inhibition of HIF-1α. Clinical data analysis revealed an inverse correlation between SPATA20 expression and colorectal cancer progression, providing evidence of its role as a potential biomarker. Utilizing SPATA20 as an indicator for HIF-1α-targeting therapy may be an attractive strategy for treating patients with hypoxia-driven cancers. In conclusion, this study demonstrates that SPATA20 deficiency promotes cancer progression by activating the HIF-1α signaling pathway.

3.
Adv Healthc Mater ; : e2304093, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409920

RESUMO

Combinatorial immuno-cancer therapy is recognized as a promising approach for efficiently treating malignant tumors. Yet, the development of multifunctional nanomedicine capable of precise tumor targeting, remote activation, and immune-regulating drug delivery remains a significant challenge. In this study, nanoparticles loaded with an immune checkpoint inhibitor (JQ-1) using polypyrrole/hyaluronic acid (PPyHA/JQ-1) are developed. These nanoparticles offer active tumor targeting, photothermal tumor ablation using near-infrared light, and laser-controlled JQ-1 release for efficient breast cancer treatment. When the molecular weight of HA varies (from 6.8 kDa to 3 MDa) in the PPyHA nanoparticles, it is found that the nanoparticles synthesized using 1 MDa HA, referred to as PPyHA (1 m), show the most suitable properties, including small hydrodynamic size, high surface HA contents, and colloidal stability. Upon 808 nm laser irradiation, PPyHA/JQ-1 elevates the temperature above 55 °C, which is sufficient for thermal ablation and active release of JQ-1 in the tumor microenvironment (TME). Notably, the controlled release of JQ-1 substantially inhibits the expression of cancer-promoting genes. Furthermore, PPyHA/JQ-1 effectively suppresses the expression of programmed cell death ligand 1 (PD-L1) and prolongs dendritic cell maturation and CD8+ T cell activation against the tumor both in vitro and in vivo. PPyHA/JQ-1 treatment simultaneously provides a significant tumor regression through photothermal therapy and immune checkpoint blockade, leading to a durable antitumor-immune response. Overall, "Three-in-one" immunotherapeutic photo-activable nanoparticles have the potential to be beneficial for a targeted combinatorial treatment approach for TNBC.

4.
Cell Mol Immunol ; 21(4): 349-361, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311677

RESUMO

Distinct neutrophil populations arise during certain pathological conditions. The generation of dysfunctional neutrophils during sepsis and their contribution to septicemia-related systemic immune suppression remain unclear. In this study, using an experimental sepsis model that features immunosuppression, we identified a novel population of pathogenic CD200Rhigh neutrophils that are generated during the initial stages of sepsis and contribute to systemic immune suppression by enhancing regulatory T (Treg) cells. Compared to their CD200Rlow counterparts, sepsis-generated CD200Rhigh neutrophils exhibit impaired autophagy and dysfunction, with reduced chemotactic migration, superoxide anion production, and TNF-α production. Increased soluble CD200 blocks autophagy and neutrophil maturation in the bone marrow during experimental sepsis, and recombinant CD200 treatment in vitro can induce neutrophil dysfunction similar to that observed in CD200Rhigh neutrophils. The administration of an α-CD200R antibody effectively reversed neutrophil dysfunction by enhancing autophagy and protecting against a secondary infection challenge, leading to increased survival. Transcriptome analysis revealed that CD200Rhigh neutrophils expressed high levels of Igf1, which elicits the generation of Treg cells, while the administration of an α-CD200R antibody inhibited Treg cell generation in a secondary infection model. Taken together, our findings revealed a novel CD200Rhigh neutrophil population that mediates the pathogenesis of sepsis-induced systemic immunosuppression by generating Treg cells.


Assuntos
Coinfecção , Sepse , Humanos , Linfócitos T Reguladores , Neutrófilos , Terapia de Imunossupressão , Anticorpos , Autofagia
5.
J Allergy Clin Immunol ; 153(3): 705-717.e11, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38000697

RESUMO

BACKGROUND: Neutrophil extracellular traps (NETs) are observed in chronic rhinosinusitis (CRS), although their role remains unclear. OBJECTIVES: This study aimed to investigate the influence of NETs on the CRS epithelium. METHODS: Forty-five sinonasal biopsy specimens were immunofluorescence-stained to identify NETs and p63+ basal stem cells. Investigators treated human nasal epithelial cells with NETs and studied them with immunofluorescence staining, Western blotting, and quantitative real-time PCR. NET inhibitors were administered to a murine neutrophilic nasal polyp model. RESULTS: NETs existed in tissues in patients with CRS with nasal polyps, especially in noneosinophilic nasal polyp tissues. p63+ basal cell expression had a positive correlation with the release of NETs. NETs induced the expansion of Ki-67+p63+ cells. We found that ΔNp63, an isoform of p63, was mainly expressed in the nasal epithelium and controlled by NETs. Treatment with deoxyribonuclease (DNase) I or Sivelestat (NET inhibitors) prevented the overexpression of ΔNp63+ epithelial stem cells and reduced polyp formation. CONCLUSIONS: These results reveal that NETs are implicated in CRS pathogenesis via basal cell hyperplasia. This study suggests a novel possibility of treating CRS by targeting NETs.


Assuntos
Armadilhas Extracelulares , Pólipos Nasais , Rinite , Rinossinusite , Sinusite , Humanos , Animais , Camundongos , Rinite/patologia , Pólipos Nasais/patologia , Hiperplasia/patologia , Sinusite/patologia , Mucosa Nasal/patologia , Doença Crônica
6.
Cancers (Basel) ; 15(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38136298

RESUMO

Nexavant was reported as an alternative to the TLR3 agonist of Poly(I:C) and its derivatives. The physicochemical properties, signaling pathways, anti-cancer effects, and mechanisms of Nexavant were investigated. The distinctive characteristics of Nexavant compared to that of Poly(I:C) were demonstrated by precise quantification, enhanced thermostability, and increased resistance to RNase A. Unlike Poly(I:C), which activates TLR3, RIG-I, and MDA5, Nexavant stimulates signaling through TLR3 and RIG-I but not through MDA5. Compared to Poly(I:C), an intratumoral Nexavant treatment led to a unique immune response, immune cell infiltration, and suppression of tumor growth in various animal cancer models. Nexavant therapy outperformed anti-PD-1 antibody treatment in all the tested models and showed a synergistic effect in combinational therapy, especially in well-defined cold tumor models. The effect was similar to that of nivolumab in a humanized mouse model. Intranasal instillation of Nexavant led to the recruitment of immune cells (NK, CD4+ T, and CD8+ T) to the lungs, suppressing lung metastasis and improving animal survival. Our study highlighted Nexavant's defined nature for clinical use and unique signaling pathways and its potential as a standalone anti-cancer agent or in combination with anti-PD-1 antibodies.

7.
Adv Mater ; 35(52): e2307165, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945054

RESUMO

Unlike pigment-based colors, which are determined by their molecular structure, diverse colors can be expressed by a regular arrangement of nanomaterials. However, existing techniques for constructing such nanostructures have struggled to combine high precision and speed, resulting in a narrow gamut, and prolonged color fabrication time. Here, this work reports a phototunable mono ink that can generate a wide range of colors by controlling regularly arranged nanostructure. Core-shell growth controlled by polymerization time precisely regulates the distance between arranged particles at a nanometer-scale, enabling the generation of various colors. Moreover, the wide and thin arrangement induces constrained out-of-plane growth, thus facilitating the intricate color generation at the desired location via photopolymerization. Upon terminating polymerization by oxygen gas, the generated colors are readily fixed and kept stable. Utilizing programmed ultraviolet illumination, large-scale and high-resolution (≈1 µm) full-color printings are demonstrated at high speed (100 mm2 s-1 ).

8.
bioRxiv ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37961118

RESUMO

The histone H3 lysine 4 (H3K4) methyltransferase KMT2D (also called MLL4) is one of the most frequently mutated epigenetic modifiers in medulloblastoma (MB) and other types of cancer. Notably, heterozygous loss of KMT2D is prevalent in MB and other cancer types. However, what role heterozygous KMT2D loss plays in tumorigenesis has not been well characterized. Here, we show that heterozygous Kmt2d loss highly promotes MB driven by heterozygous loss of the MB suppressor gene Ptch in mice. Heterozygous Kmt2d loss upregulated tumor-promoting programs, including oxidative phosphorylation and G-protein-coupled receptor signaling, in Ptch-mutant-driven MB genesis. Mechanistically, both downregulation of the transcription-repressive tumor suppressor gene NCOR2 by heterozygous Kmt2d loss and upregulation of the oncogene MycN by heterozygous Ptch loss increased the expression of tumor-promoting genes. Moreover, heterozygous Kmt2d loss extensively diminished enhancer signals (e.g., H3K27ac) and H3K4me3 signature, including those for tumor suppressor genes (e.g., Ncor2). Combinatory pharmacological inhibition of oxidative phosphorylation and the H3K4 demethylase LSD1 drastically reduced tumorigenicity of MB cells bearing heterozygous Kmt2d loss. These findings reveal the mechanistic basis underlying the MB-promoting effect of heterozygous KMT2D loss, provide a rationale for a therapeutic strategy for treatment of KMT2D-deficient MB, and have mechanistic implications for the molecular pathogenesis of other types of cancer bearing heterozygous KMT2D loss.

9.
J Clin Med ; 12(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38002609

RESUMO

Quadrilateral plate fractures represent a heterogeneous group of acetabular fractures. Accurate reduction is required to prevent post-traumatic arthritis. The purpose of this study is to determine the reduction effect of the direct fixation of quadrilateral plates in acetabular fractures, and to evaluate the strength of direct fixation compared to indirect fixation. Between 2005 and 2021, 49 patients underwent surgery for open reduction and internal fixation in acetabular fractures with severely displaced quadrilateral plates. Twenty-nine patients comprised the indirect fixation group, and twenty patients comprised the direct fixation group. In a comparison of primary outcome between two groups, 10 out of 29 indirect-group patients and 1 out of 20 direct-group patients developed post-traumatic osteoarthritis, wherein the difference between the two groups is statistically significant. In the assessment of postoperative Matta's radiological reduction status, 19 out of 20 patients in the direct group had achieved anatomical and congruent reduction. The treatment using a direct reduction and internal fixation improved the reduction quality of articular displacement and offered a better survivorship of the affected hip joint.

10.
Small Methods ; 7(11): e2300748, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37712206

RESUMO

With the growing popularity of Li-ion batteries in large-scale applications, building a safer battery has become a common goal of the battery community. Although the small errors inside the cells trigger catastrophic failures, tracing them and distinguishing cell failure modes without knowledge of cell anatomy can be challenging using conventional methods. In this study, a real-time, non-invasive magnetic field imaging (MFI) analysis that can signal the battery current-induced magnetic field and visualize the current flow within Li-ion cells is developed. A high-speed, spatially resolved MFI scan is used to derive the current distribution pattern from cells with different tab positions at a current load. Current maps are collected to determine possible cell failures using fault-simulated batteries that intentionally possess manufacturing faults such as lead-tab connection failures, electrode misalignment, and stacking faults (electrode folding). A modified MFI analysis exploiting the magnetic field interference with the countercurrent-carrying plate enables the direct identification of defect spots where abnormal current flow occurs within the pouch cells.

11.
ACS Omega ; 8(36): 32606-32614, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37720733

RESUMO

A fundamental understanding of aging processes in lithium-ion batteries (LIBs) is imperative in the development of future battery architectures for widespread electrification. Herein, dissolution of transition metals from cathode active materials of LIBs is among the most important degradation processes. Research has demonstrated that elevated operating temperatures accelerate battery degradation. However, the exact mechanism of transition-metal dissolution at elevated temperatures has still to be clarified. Current literature suggests that the reaction rate of dissolution increases with increasing temperature; moreover, the decomposition of electrolytes results in products that also accelerate dissolution processes. Most studies focus on ex situ analyses of thermally treated full cells. This approach is not appropriate to get detailed insights and to distinguish between different contributions. In this work, with the help of real-time dissolution analysis using an electroanalytical flow cell (EFC) coupled to an inductively coupled plasma mass spectrometer (ICP-MS), we present novel details of the temperature effects on in situ dissolution at the cathode electrolyte interface. With fresh electrolytes, we find increased Mn dissolution even at open-circuit conditions as well as with constant voltage polarization when the electrode sample is heated at constant temperatures between 50 and 80 °C. The release of transition metals also responds in a nuanced manner when applying temperature transients. Utilizing electrolytes preheated at 60 and 100 °C, we demonstrate that decomposition products in the bulk electrolyte have no influence on transition-metal (TM) dissolution when constantly flushing the cell with the thermally aged electrolyte samples. Only when keeping the cathode temperature at 60 °C, the dissolution increases by a factor of 2-3. Our findings highlight the interplay between the cathode and electrolyte and provide new insights into the dissolution mechanism of cathode materials.

12.
Biosensors (Basel) ; 13(8)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37622903

RESUMO

We present a fiber-optic sensor based on the principles of a Fabry-Perot interferometer (FPI), which promptly, sensitively, and precisely detects blood clot formation. This sensor has two types of sensor tips; the first was crafted by splicing a tapered fiber into a single-mode fiber (SMF), where fine-tuning was achieved by adjusting the tapered diameter and length. The second type is an ultra-compact blood FPI situated on the core of a single-mode fiber. The sensor performance was evaluated via clot-formation-indicating spectrum shifts induced by the varied quantities of a thrombin reagent introduced into the blood. The most remarkable spectral sensitivity of the micro-tip fiber type was approximately 7 nm/µL, with a power sensitivity of 4.1 dB/µL, obtained with a taper fiber diameter and length of 55 and 300 µm, respectively. For the SMF type, spectral sensitivity was observed to be 8.7 nm/µL, with an optical power sensitivity of 0.4 dB/µL. This pioneering fiber-optic thrombosis sensor has the potential for in situ applications, healthcare, medical monitoring, harsh environments, and chemical and biological sensing. The study underscores the scope of optical technology in thrombus detection, establishing a platform for future medical research and application.


Assuntos
Pesquisa Biomédica , Trombose , Humanos , Trombose/diagnóstico , Tecnologia de Fibra Óptica , Interferometria , Tecnologia
13.
Mater Horiz ; 10(12): 5436-5456, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37560794

RESUMO

In the last few decades, the influence of machine learning has permeated many areas of science and technology, including the field of materials science. This toolkit of data driven methods accelerated the discovery and production of new materials by accurately predicting the complicated physical processes and mechanisms that are not fully described by existing materials theories. However, the availability of a growing number of increasingly complex machine learning models confronts us with the question of "which machine learning algorithm to employ". In this review, we provide a comprehensive review of common machine learning algorithms used for materials design, as well as a guideline for selecting the most appropriate model considering the nature of the design problem. To this end, we classify the material design problems into four categories of: (i) the training data set being sufficiently large to capture the trend of design space (interpolation problem), (ii) a vast design space that cannot be explored thoroughly with the initial training data set alone (extrapolation problem), (iii) multi-fidelity datasets (small accurate dataset and large approximate dataset), and (iv) only a small dataset available. The most successful machine learning-based surrogate models and design approaches will be discussed for each case along with pertinent literature. This review focuses mostly on the use of ML algorithms for the inverse design of complicated composite structures, a topic that has received a lot of attention recently with the rise of additive manufacturing.

14.
Front Immunol ; 14: 1151511, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409121

RESUMO

Introduction: Multiple sclerosis (MS) is a potentially disabling disease that damages the brain and spinal cord, inducing paralysis of the body. While MS has been known as a T-cell mediated disease, recent attention has been drawn to the involvement of B cells in its pathogenesis. Autoantibodies from B cells are closely related with the damage lesion of central nervous system and worse prognosis. Therefore, regulating the activity of antibody secreting cell could be related with the severity of the MS symptoms. Methods: Total mouse B cells were stimulated with LPS to induce their differentiation into plasma cells. The differentiation of plasma cells was subsequently analyzed using flow cytometry and quantitative PCR analysis. To establish an experimental autoimmune encephalomyelitis (EAE) mouse model, mice were immunized with MOG35-55/CFA emulsion. Results: In this study, we found that plasma cell differentiation was accompanied by upregulation of autotaxin, which converts sphingosylphosphorylcholine (SPC) to sphingosine 1-phosphate in response to LPS. We observed that SPC strongly blocked plasma cell differentiation from B cells and antibody production in vitro. SPC downregulated LPS-stimulated IRF4 and Blimp 1, which are required for the generation of plasma cells. SPC-induced inhibitory effects on plasma cell differentiation were specifically blocked by VPC23019 (S1PR1/3 antagonist) or TY52159 (S1PR3 antagonist), but not by W146 (S1PR1 antagonist) and JTE013 (S1PR2 antagonist), suggesting a crucial role of S1PR3 but not S1PR1/2 in the process. Administration of SPC against an EAE mouse model significantly attenuated the symptoms of disease, showing decreased demyelinated areas of the spinal cord and decreased numbers of cells infiltrated into the spinal cord. SPC markedly decreased plasma cell generation in the EAE model, and SPC-induced therapeutic effects against EAE were not observed in µMT mice. Conclusion: Collectively, we demonstrate that SPC strongly inhibits plasma cell differentiation, which is mediated by S1PR3. SPC also elicits therapeutic outcomes against EAE, an experimental model of MS, suggesting SPC as a new material to control MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Lipopolissacarídeos/efeitos adversos , Medula Espinal/patologia , Diferenciação Celular
15.
Small ; 19(43): e2302722, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37376876

RESUMO

Tailoring the Li+ microenvironment is crucial for achieving fast ionic transfer and a mechanically reinforced solid-electrolyte interphase (SEI), which administers the stable cycling of Li-metal batteries (LMBs). Apart from traditional salt/solvent compositional tuning, this study presents the simultaneous modulation of Li+ transport and SEI chemistry using a citric acid (CA)-modified silica-based colloidal electrolyte (C-SCE). CA-tethered silica (CA-SiO2 ) can render more active sites for attracting complex anions, leading to further dissociation of Li+ from the anions, resulting in a high Li+ transference number (≈0.75). Intermolecular hydrogen bonds between solvent molecules and CA-SiO2 and their migration also act as nano-carrier for delivering additives and anions toward the Li surface, reinforcing the SEI via the co-implantation of SiO2 and fluorinated components. Notably, C-SCE demonstrated Li dendrite suppression and improved cycling stability of LMBs compared with the CA-free SiO2 colloidal electrolyte, hinting that the surface properties of the nanoparticles have a huge impact on the dendrite-inhibiting role of nano colloidal electrolytes.

16.
ACS Nano ; 17(13): 12290-12304, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37339066

RESUMO

Myocardial infarction (MI) is a major cause of death worldwide. After the occurrence of MI, the heart frequently undergoes serious pathological remodeling, leading to excessive dilation, electrical disconnection between cardiac cells, and fatal functional damage. Hence, extensive efforts have been made to suppress pathological remodeling and promote the repair of the infarcted heart. In this study, we developed a hydrogel cardiac patch that can provide mechanical support, electrical conduction, and tissue adhesiveness to aid in the recovery of an infarcted heart function. Specifically, we developed a conductive and adhesive hydrogel (CAH) by combining the two-dimensional titanium carbide (Ti3C2Tx) MXene with natural biocompatible polymers [i.e., gelatin and dextran aldehyde (dex-ald)]. The CAH was formed within 250 s of mixing the precursor solution and could be painted. The hydrogel containing 3.0 mg/mL MXene, 10% gelatin, and 5% dex-ald exhibited appropriate material characteristics for cardiac patch applications, including a uniform distribution of MXene, a high electrical conductivity (18.3 mS/cm), cardiac tissue-like elasticity (30.4 kPa), strong tissue adhesion (6.8 kPa), and resistance to various mechanical deformations. The CAH was cytocompatible and induced cardiomyocyte (CM) maturation in vitro, as indicated by the upregulation of connexin 43 expression and a faster beating rate. Furthermore, CAH could be painted onto the heart tissue and remained stably adhered to the beating epicardium. In vivo animal studies revealed that CAH cardiac patch treatment significantly improved cardiac function and alleviated the pathological remodeling of an infarcted heart. Thus, we believe that our MXene-based CAH can potentially serve as a promising platform for the effective repair of various electroactive tissues including the heart, muscle, and nerve tissues.


Assuntos
Hidrogéis , Infarto do Miocárdio , Animais , Hidrogéis/farmacologia , Gelatina/metabolismo , Adesivos/farmacologia , Infarto do Miocárdio/patologia , Miócitos Cardíacos , Polímeros/farmacologia , Condutividade Elétrica
17.
Exp Mol Med ; 55(6): 1110-1130, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37258585

RESUMO

Sphingolipids, which are components of cellular membranes and organ tissues, can be synthesized or degraded to modulate cellular responses according to environmental cues, and the balance among the different sphingolipids is important for directing immune responses, regardless of whether they originate, as intra- or extracellular immune events. Recent progress in multiomics-based analyses and methodological approaches has revealed that human health and diseases are closely related to the homeostasis of sphingolipid metabolism, and disease-specific alterations in sphingolipids and related enzymes can be prognostic markers of human disease progression. Accumulating human clinical data from genome-wide association studies and preclinical data from disease models provide support for the notion that sphingolipids are the missing pieces that supplement our understanding of immune responses and diseases in which the functions of the involved proteins and nucleotides have been established. In this review, we analyze sphingolipid-related enzymes and reported human diseases to understand the important roles of sphingolipid metabolism. We discuss the defects and alterations in sphingolipid metabolism in human disease, along with functional roles in immune cells. We also introduce several methodological approaches and provide summaries of research on sphingolipid modulators in this review that should be helpful in studying the roles of sphingolipids in preclinical studies for the investigation of experimental and molecular medicines.


Assuntos
Estudo de Associação Genômica Ampla , Esfingolipídeos , Humanos , Esfingolipídeos/metabolismo , Membrana Celular/metabolismo , Homeostase
18.
Nat Commun ; 14(1): 2363, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185280

RESUMO

Chronic colonic inflammation is a feature of cancer and is strongly associated with tumorigenesis, but its underlying molecular mechanisms remain poorly understood. Inflammatory conditions increased ITF2 and p65 expression both ex vivo and in vivo, and ITF2 and p65 showed positive correlations. p65 overexpression stabilized ITF2 protein levels by interfering with the binding of Parkin to ITF2. More specifically, the C-terminus of p65 binds to the N-terminus of ITF2 and inhibits ubiquitination, thereby promoting ITF2 stabilization. Parkin acts as a E3 ubiquitin ligase for ITF2 ubiquitination. Intestinal epithelial-specific deletion of ITF2 facilitated nuclear translocation of p65 and thus increased colitis-associated cancer tumorigenesis, which was mediated by Azoxymethane/Dextran sulfate sodium or dextran sulfate sodium. Upregulated ITF2 expression was lost in carcinoma tissues of colitis-associated cancer patients, whereas p65 expression much more increased in both dysplastic and carcinoma regions. Therefore, these findings indicate a critical role for ITF2 in the repression of colitis-associated cancer progression and ITF2 would be an attractive target against inflammatory diseases including colitis-associated cancer.


Assuntos
Carcinoma , Neoplasias Associadas a Colite , Colite , Animais , Humanos , Carcinogênese/genética , Colite/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Inflamação/complicações , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/genética , Fator de Transcrição RelA
19.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901857

RESUMO

Skin cancer is one of the most prevalent cancers in the Caucasian population. In the United States, it is estimated that at least one in five people will develop skin cancer in their lifetime, leading to significant morbidity and a healthcare burden. Skin cancer mainly arises from cells in the epidermal layer of the skin, where oxygen is scarce. There are three main types of skin cancer: malignant melanoma, basal cell carcinoma, and squamous cell carcinoma. Accumulating evidence has revealed a critical role for hypoxia in the development and progression of these dermatologic malignancies. In this review, we discuss the role of hypoxia in treating and reconstructing skin cancers. We will summarize the molecular basis of hypoxia signaling pathways in relation to the major genetic variations of skin cancer.


Assuntos
Carcinoma Basocelular , Carcinoma de Células Escamosas , Melanoma , Neoplasias Cutâneas , Humanos , Estados Unidos , Neoplasias Cutâneas/patologia , Melanoma/metabolismo , Carcinoma Basocelular/patologia , Carcinoma de Células Escamosas/patologia , Hipóxia
20.
Mater Horiz ; 10(6): 2215-2225, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37000519

RESUMO

In this work, we describe the development of an implantable ionic device that can deliver a spatially targeted light source to tumor tissues in a controllable manner. The motivation behind our approach is to overcome certain limitations of conventional approaches where light is delivered from the outside of the body and only achieves low penetration depths. Also, to avoid the issues that come from the periodic need to replace the device's battery, we utilize a wireless power transfer system synchronized with light operation in an implantable structure. In our testing of this implanted, soft ionic, gel-based device that receives power wirelessly, we were able to clearly observe its capability to effectively deliver light in a harmonious and stable configuration to adjacent tissues. This approach reduces the mechanical inconsistencies seen in conventional systems that are induced by mismatches between the mechanical strength of conventional metallic components and that of biological tissues. The light delivering performance of our device was studied in depth under the various conditions set by adjusting the area of the gel receivers, the ion concentration and the ion types used in the gel components. The enhanced antitumor effects of our device were observed through in vitro cell tests, in comparison with treatments using the conventional approach of using direct light from outside the body. Full encapsulation using biocompatible elastomers enables our device to provide good functional stability, while implantation for about 3 weeks in the in vivo model showed the effective targeted photodynamic treatments made possible by our approach. Our advanced approach of designing the implantable platform based on ionic gel components allows us to iteratively irradiate a target with light whenever required, making the technology particularly suited to long-term treatment of residual tumors while facilitating further practical and clinical development.


Assuntos
Fotoquimioterapia , Tecnologia sem Fio , Próteses e Implantes , Fontes de Energia Elétrica , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...